This vignette describes the temporal and spatial coverage of the democracy measures included in this package, notes their correlations, and documents any changes made to the original data sources.

General Characteristics

library(knitr)
library(QuickUDS)
library(dplyr)
library(reshape2)

democracy_long <- democracy %>%
        melt(id.vars = 1:15, na.rm=TRUE) 

kable(democracy_long %>%
        group_by(variable) %>%
        summarise(distinct_countries = n_distinct(country_name),
                  distinct_years = n_distinct(year),
                  min_year = min(year),
                  max_year = max(year),
                  mean_year = mean(year),
                  num_values = n_distinct(value),
                  mean = mean(value),
                  median = median(value),
                  min_value = min(value),
                  max_value = max(value),
                  sd = sd(value)),
      digits = 2)
variable distinct_countries distinct_years min_year max_year mean_year num_values mean median min_value max_value sd
arat_pmm 151 35 1948 1982 1967.70 77 73.20 69.00 29.00 109.00 18.91
blm 5 101 1900 2000 1950.00 3 0.25 0.00 0.00 1.00 0.36
blm_pmm 5 55 1946 2000 1973.00 3 0.36 0.00 0.00 1.00 0.41
bmr_democracy 212 211 1800 2010 1938.71 2 0.32 0.00 0.00 1.00 0.47
bmr_democracy_omitteddata 212 211 1800 2010 1938.89 2 0.32 0.00 0.00 1.00 0.47
bnr 200 93 1913 2005 1970.84 2 0.35 0.00 0.00 1.00 0.48
bollen_pmm 161 5 1950 1980 1965.48 348 55.46 53.59 0.00 100.00 33.70
doorenspleet 172 195 1800 1994 1921.29 2 1.18 1.00 1.00 2.00 0.38
eiu 176 16 1996 2014 2006.92 788 0.47 0.45 0.00 0.97 0.24
exconst 186 216 1800 2015 1938.89 10 0.09 3.00 -88.00 7.00 17.29
exrec 186 216 1800 2015 1939.48 11 0.86 3.00 -88.00 8.00 17.60
freedomhouse 200 43 1972 2015 1994.87 13 4.26 4.50 1.00 7.00 2.06
freedomhouse_electoral 196 27 1989 2015 2002.20 2 0.60 1.00 0.00 1.00 0.49
freedomhouse_pmm 198 37 1972 2008 1990.95 13 4.15 4.00 1.00 7.00 2.07
gwf 154 270 1741 2010 1969.92 2 1.43 1.00 1.00 2.00 0.49
hadenius_pmm 129 1 1988 1988 1988.00 51 4.51 3.10 0.00 10.00 3.56
kailitz_binary 198 66 1945 2010 1982.69 2 0.41 0.00 0.00 1.00 0.49
kailitz_tri 198 66 1945 2010 1982.69 3 0.99 1.00 0.00 2.00 0.91
lied 223 216 1800 2015 1938.91 7 2.78 3.00 0.00 6.00 2.35
lied_accountable 223 216 1800 2015 1938.91 3 0.94 1.00 0.00 2.00 0.87
lied_electoral 223 216 1800 2015 1938.91 3 1.38 2.00 0.00 2.00 0.85
lied_inclusive 223 216 1800 2015 1938.91 3 1.17 2.00 0.00 2.00 0.94
magaloni_democ_binary 172 244 1769 2012 1972.44 2 0.42 0.00 0.00 1.00 0.49
magaloni_regime_tri 172 244 1769 2012 1972.44 3 2.01 2.00 1.00 3.00 0.92
mainwaring 20 108 1900 2007 1953.60 3 -0.32 -1.00 -1.00 1.00 0.84
mainwaring_pmm 18 62 1946 2007 1981.10 3 0.12 0.00 -1.00 1.00 0.85
munck_pmm 18 19 1960 2005 1993.79 21 0.84 1.00 0.00 1.00 0.26
pacl 196 63 1946 2008 1981.94 2 0.44 0.00 0.00 1.00 0.50
pacl_pmm 196 63 1946 2008 1982.01 2 0.44 0.00 0.00 1.00 0.50
PEPS1i 175 204 1800 2003 1949.74 726 -3.20 -7.00 -10.00 10.00 6.57
PEPS1q 176 204 1800 2003 1950.37 727 -3.18 -6.24 -10.00 10.00 6.49
PEPS1v 177 204 1800 2003 1932.32 1866 -2.87 -4.00 -10.00 10.00 5.66
PEPS2i 143 59 1945 2003 1981.28 843 3.72 5.00 -9.59 10.00 4.39
PEPS2q 165 59 1945 2003 1978.99 856 -1.13 -1.46 -10.00 10.00 6.91
PEPS2v 168 194 1810 2003 1937.77 2414 -2.43 -3.55 -10.00 10.00 5.78
pitf 185 216 1800 2015 1939.20 5 2.42 2.00 1.00 5.00 1.48
pitf_binary 185 216 1800 2015 1939.20 2 1.36 1.00 1.00 2.00 0.48
polcomp 186 216 1800 2015 1939.20 13 1.30 6.00 -88.00 10.00 17.76
polity 186 216 1800 2015 1938.89 24 -4.08 -3.00 -88.00 10.00 17.67
polity_pmm 167 63 1946 2008 1980.85 21 0.13 -1.00 -10.00 10.00 7.50
polity2 186 216 1800 2015 1938.91 21 -0.60 -3.00 -10.00 10.00 7.07
Polity3 181 204 1800 2003 1929.05 21 -1.13 -3.00 -10.00 10.00 7.05
polyarchy_contestation 196 2 1985 2000 1993.11 9 5.82 6.00 1.00 9.00 2.90
polyarchy_pmm 194 2 1985 2000 1993.12 11 6.33 7.00 0.00 10.00 3.51
polyarchy_reversed 196 2 1985 2000 1993.11 11 6.35 7.00 0.00 10.00 3.52
prc 149 252 1747 1998 1937.00 4 2.00 1.00 1.00 4.00 1.30
prc_notrans 149 252 1747 1998 1936.50 3 2.00 1.00 1.00 4.00 1.31
prc_pmm 148 53 1946 1998 1974.83 4 2.15 1.00 1.00 4.00 1.37
przeworski 197 221 1788 2008 1950.24 4 1.79 2.00 0.00 3.00 0.81
svolik 198 88 1921 2008 1980.99 2 1.44 1.00 1.00 2.00 0.50
ulfelder 167 56 1955 2010 1984.84 2 0.41 0.00 0.00 1.00 0.49
utip_dichotomous 152 44 1963 2006 1984.47 2 0.52 1.00 0.00 1.00 0.50
utip_dichotomous_strict 152 44 1963 2006 1984.47 2 0.48 0.00 0.00 1.00 0.50
utip_trichotomous 152 44 1963 2006 1984.47 3 0.99 1.00 0.00 2.00 0.98
v2x_api 173 116 1900 2015 1960.74 9320 0.47 0.41 0.02 0.98 0.31
v2x_delibdem 172 116 1900 2015 1960.75 9884 0.21 0.07 0.00 0.93 0.27
v2x_egaldem 173 116 1900 2015 1960.74 10212 0.25 0.15 0.01 0.92 0.25
v2x_libdem 173 116 1900 2015 1960.74 10662 0.26 0.15 0.01 0.93 0.25
v2x_mpi 173 116 1900 2015 1960.74 6114 0.18 0.00 0.00 0.93 0.28
v2x_partipdem 173 116 1900 2015 1960.72 9949 0.20 0.11 0.00 0.84 0.21
v2x_polyarchy 173 116 1900 2015 1960.74 9320 0.32 0.21 0.01 0.96 0.28
vanhanen_competition 193 203 1810 2012 1947.43 694 25.22 20.00 0.00 70.00 25.17
vanhanen_democratization 193 203 1810 2012 1947.43 445 8.43 1.10 0.00 49.00 11.68
vanhanen_participation 193 203 1810 2012 1947.43 760 21.10 14.00 0.00 71.00 21.88
vanhanen_pmm 192 63 1946 2008 1981.71 439 11.31 5.90 0.00 49.00 12.67
wahman_teorell_hadenius 193 39 1972 2010 1991.93 2 0.42 0.00 0.00 1.00 0.49

Arat

This is the dataset described in Arat 1991; the actual values are taken from Pemstein, Meserve, and Melton 2013 (the replication data for Pemstein, Meserve, and Melton 2010).

Coverage

library(ggplot2)

panel <- democracy %>% select(country_name,year) %>% distinct()

temporal_coverage <- function(data) {
  data <- left_join(panel,data) 
  
  data <- data %>% 
    group_by(year, add=TRUE) %>% 
    count(year,in_system)

  ggplot(data =  data, aes(x=year,fill = in_system, y = n)) + 
    geom_bar(stat = "identity") +
    theme_bw() +
    theme(legend.position = "bottom") +
    labs(fill = "In G&W system of states", 
         y = "Number of states or territories included\nin each year of `democracy` panel") +
    ggtitle("Coverage \nwithin the `democracy` dataset")
}

library(rworldmap)

world <- getMap()
world <- fortify(world)
## Regions defined for each Polygons
spatial_coverage <- function(data) {
  ggplot() +
    geom_path(data = world, aes(x=long,y=lat,group=group)) +
    theme_bw() +
    theme(legend.position = "bottom") +
    geom_count(data = data, aes(x=lon,y=lat,color = in_system)) +
    labs(color = "In G&W system of states", y = "", x = "", size = "Number of country-years") +
    ggtitle("Spatial coverage")
}

data <- democracy_long %>% 
  filter(variable == "arat_pmm")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

BLM

This is the dataset described in Bowman, Lehoucq, and Mahoney 2005.

Coverage

data <- democracy_long %>% filter(variable == "blm")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

BMR

This is the dataset described in Boix, Miller, and Rosato 2012.

Coverage

data <- democracy_long %>% filter(variable == "bmr_democracy")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable %in% c("bmr_democracy","bmr_democracy_omitteddata"))

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

BNR

This is the dataset described in Bernhardt, Nordstrom, and Reenock 2001. The original dataset only counts periods of democracy in the period 1913-2005, since it is designed for event history analysis. To put it in country-year format, this package assumes that country-years in independent states between 1913 and 2005 are to be counted as non-democratic if they are not explicitly said to be democratic by BNR. (Country-years are considered to be independent if the state is not a microstate and appears in Gleditasch and Ward’s [1999] panel of indepdent states for the period).

Coverage

data <- democracy_long %>% filter(variable == "bnr")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

Bollen

This is the dataset described in Bollen 2001. The actual values are taken from Pemstein, Meserve, and Melton’s replication data for their article (Pemstein, Meserve, and Melton 2013).

Coverage

data <- democracy_long %>% filter(variable == "bollen_pmm")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

Doorenspleet

This is the dataset described in Doorenspleet 2000.

Coverage

data <- democracy_long %>% filter(variable == "doorenspleet")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

EIU

This contains the Economist Intelligence Unit’s index of democracy (EIU 2012). The actual data is taken from the World Bank’s Governance Indicators (http://www.govindicators.org)

Coverage

data <- democracy_long %>% filter(variable == "eiu")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

Freedom House (Freedom in the World)

This is the Freedom in the World Index, to 2015 (Freedom House 2016). Some non-independent territories have been excluded from the original data.

Coverage

data <- democracy_long %>% filter(variable %in% c("freedomhouse"))

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

Freedom House (Electoral Democracies)

This is Freedom House’s list of electoral democracies, to 2015 (Freedom House 2016). Some non-independent territories have been excluded from the original data.

Coverage

data <- democracy_long %>% filter(variable == "freedomhouse_electoral")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

GWF (Geddes, Wright, and Frantz)

This is a measure of democracy/non-democracy derived from the dataset described in Geddes, Wright, and Frantz 2014. The original data has been extended beyond 1945 by reconciling the information contained in the original dataset’s gwf_startdate, gwf_spell, and gwf_casename variables, which encode the start year of each democratic and non-democratic regime (sometimes going back to the 18th century).

Coverage

data <- democracy_long %>% filter(variable == "gwf")

temporal_coverage(data) +
  geom_vline(xintercept = 1945) +
  annotate("text", label = "Limit of original dataset", x = 1945,y = 100, angle=90)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

Hadenius

This is the dataset in Hadenius 1992. Actual values taken from Pemstein, Meserve, and Melton 2013.

Coverage

data <- democracy_long %>% filter(variable == "hadenius_pmm")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),bins=20) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

Kailitz

The dataset described in Kailitz 2013.

Coverage

data <- democracy_long %>% filter(variable == "kailitz_binary")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable %in% c("kailitz_binary","kailitz_tri"))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Index construction and known problems

Note that 316 of the country-years in the Kailitz dataset are classified with more than one regime type.

kable(kailitz_yearly %>% 
        count(multiple_regimes = grepl("-",combined_regime)))
multiple_regimes n
FALSE 9290
TRUE 316
kable(kailitz_yearly %>% 
        filter(grepl("-",combined_regime)) %>%
        group_by(country_name) %>%
        arrange(country_name,year) %>%
        group_by(combined_regime, add=TRUE) %>%
        summarise(min = min(year), max = max(year), n = n()))
country_name combined_regime min max n
Afghanistan Electoral Autocracy-Personalist Autocracy 2010 2010 1
Algeria Electoral Autocracy-One party Autocracy 1989 1991 3
Angola Electoral Autocracy-State Failure or Occupation 2010 2010 1
Benin Electoral Autocracy-Personalist Autocracy 1960 1962 3
Benin Military Autocracy-Personalist Autocracy 1965 1974 8
Benin Personalist Autocracy-Transition 1963 1971 4
Burundi Electoral Autocracy-State Failure or Occupation 1993 1995 3
Burundi One party Autocracy-Personalist Autocracy 1982 1983 2
Cambodia (Kampuchea) Communist Ideocracy-State Failure or Occupation 1981 1990 10
Central African Republic Electoral Autocracy-One party Autocracy 1991 1992 2
Colombia Electoral Autocracy-Liberal Democracy 1946 1947 2
Colombia State Failure or Occupation-Transition 1948 1952 5
Cuba Electoral Autocracy-Liberal Democracy 1946 1951 6
Ecuador Electoral Autocracy-Personalist Autocracy 1970 1971 2
Ecuador Electoral Autocracy-Transition 2000 2001 2
Guinea-Bissau Military Autocracy-Personalist Autocracy 1980 1983 4
Guinea-Bissau Military Autocracy-Transition 2004 2004 1
Haiti Electoral Autocracy-Transition 1946 1947 2
Honduras Electoral Autocracy-Liberal Democracy 1957 1962 6
Indonesia Personalist Autocracy-Transition 1952 1967 12
Kuwait Monarchy-State Failure or Occupation 1990 1990 1
Lebanon State Failure or Occupation-Transition 2000 2001 2
Lesotho Electoral Autocracy-State Failure or Occupation 1998 1999 2
Lesotho Electoral Autocracy-Transition 2000 2001 2
Liberia Personalist Autocracy-State Failure or Occupation 1990 1990 1
Madagascar (Malagasy) Military Autocracy-Personalist Autocracy 1972 1974 3
Madagascar (Malagasy) Personalist Autocracy-Transition 1975 1975 1
Mauritania Electoral Autocracy-Military Autocracy 2008 2008 1
Mozambique Personalist Autocracy-Transition 1991 1993 3
Nicaragua Communist Ideocracy-Electoral Autocracy 1984 1989 6
Nicaragua Communist Ideocracy-State Failure or Occupation 1980 1981 2
Nicaragua Communist Ideocracy-Transition 1982 1983 2
Nicaragua Electoral Autocracy-Personalist Autocracy 1972 1972 1
Nicaragua Military Autocracy-Personalist Autocracy 1973 1973 1
Niger Electoral Autocracy-Liberal Democracy 2000 2010 11
Peru Electoral Autocracy-Liberal Democracy 1963 1967 5
Philippines Electoral Autocracy-Liberal Democracy 1946 1971 26
Philippines Liberal Democracy-Personalist Autocracy 1994 2002 9
Portugal Military Autocracy-Transition 1974 1975 2
Seychelles Electoral Autocracy-Liberal Democracy 2007 2010 4
Seychelles Liberal Democracy-Transition 1976 1976 1
Somalia Liberal Democracy-Transition 1960 1968 9
Somalia Military Autocracy-Personalist Autocracy 1969 1990 22
Somalia Military Autocracy-State Failure or Occupation 1991 1991 1
Spain Military Autocracy-One party Autocracy-Personalist Autocracy 1946 1974 29
Sri Lanka (Ceylon) Electoral Autocracy-Liberal Democracy 1960 2010 51
Sri Lanka (Ceylon) Electoral Autocracy-Transition 1948 1959 12
Syria One party Autocracy-Personalist Autocracy 2000 2010 11
Tunisia One party Autocracy-Personalist Autocracy 1975 1978 4
Venezuela Military Autocracy-Personalist Autocracy 1948 1957 10
Yemen (Arab Republic of Yemen) Monarchy-Transition 1946 1947 2

The following are especially troublesome, since the multiple categories do not make sense:

kable(kailitz_yearly %>% 
        filter(grepl("-",combined_regime)) %>%
        group_by(country_name) %>%
        arrange(country_name,year) %>%
        group_by(combined_regime, add=TRUE) %>%
        summarise(min = min(year), max = max(year), n = n()) %>%
        filter(grepl("democracy",combined_regime, ignore.case=TRUE)))
country_name combined_regime min max n
Colombia Electoral Autocracy-Liberal Democracy 1946 1947 2
Cuba Electoral Autocracy-Liberal Democracy 1946 1951 6
Honduras Electoral Autocracy-Liberal Democracy 1957 1962 6
Niger Electoral Autocracy-Liberal Democracy 2000 2010 11
Peru Electoral Autocracy-Liberal Democracy 1963 1967 5
Philippines Electoral Autocracy-Liberal Democracy 1946 1971 26
Philippines Liberal Democracy-Personalist Autocracy 1994 2002 9
Seychelles Electoral Autocracy-Liberal Democracy 2007 2010 4
Seychelles Liberal Democracy-Transition 1976 1976 1
Somalia Liberal Democracy-Transition 1960 1968 9
Sri Lanka (Ceylon) Electoral Autocracy-Liberal Democracy 1960 2010 51

I have constructed the index to classify a country as “democratic” only if it is not also classified as a non-democratic regime as well. Here are the index counts for each regime type:

kable(kailitz_yearly %>%
        count(kailitz_binary,kailitz_tri,combined_regime))
kailitz_binary kailitz_tri combined_regime n
0 0 Communist Ideocracy 788
0 0 Communist Ideocracy-Electoral Autocracy 6
0 0 Communist Ideocracy-State Failure or Occupation 12
0 0 Communist Ideocracy-Transition 2
0 0 Electoral Autocracy-Military Autocracy 1
0 0 Electoral Autocracy-One party Autocracy 5
0 0 Electoral Autocracy-Personalist Autocracy 7
0 0 Electoral Autocracy-State Failure or Occupation 6
0 0 Electoral Autocracy-Transition 18
0 0 Liberal Democracy-Personalist Autocracy 9
0 0 Liberal Democracy-Transition 10
0 0 Military Autocracy 570
0 0 Military Autocracy-One party Autocracy-Personalist Autocracy 29
0 0 Military Autocracy-Personalist Autocracy 48
0 0 Military Autocracy-State Failure or Occupation 1
0 0 Military Autocracy-Transition 3
0 0 Monarchy 987
0 0 Monarchy-State Failure or Occupation 1
0 0 Monarchy-Transition 2
0 0 One party Autocracy 486
0 0 One party Autocracy-Personalist Autocracy 17
0 0 Personalist Autocracy 463
0 0 Personalist Autocracy-State Failure or Occupation 1
0 0 Personalist Autocracy-Transition 20
0 0 State Failure or Occupation 245
0 0 State Failure or Occupation-Transition 7
0 0 Transition 319
0 1 Electoral Autocracy 1477
0 1 Electoral Autocracy-Liberal Democracy 111
1 2 Liberal Democracy 3955

LIED

This is the Lexical Index of Democracy described in Skaaning, Gerring, and Bartusevicius 2015 (version 3, updated to 2015).

Coverage

data <- democracy_long %>% filter(variable == "lied")

temporal_coverage(data)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),binwidth=1) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

Magaloni

This is a measure of democracy derived from the authoritarian regimes dataset in Magaloni, Chu, and Min 2013. The original dataset has been extended beyond 1950 using the information encoded in the duration_nr variable of the original dataset, which provides information about the start date of each regime.

Coverage

data <- democracy_long %>% filter(variable == "magaloni_democ_binary")

temporal_coverage(data) +
  geom_vline(xintercept = 1950) +
  annotate("text", label = "Limit of original dataset", x = 1950,y = 100, angle=90)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

One change has been made (Pakistan 1971/1972 appears to have been misclassified as a democracy).

Note magaloni_regime_tri identifies as “hybrid” (middle level) all multiparty autocracies.

data <- democracy_long %>% filter(variable %in% c("magaloni_democ_binary","magaloni_regime_tri"))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Mainwaring

This is the dataset in Mainwaring, Brinks, and Perez Linan 2008.

Coverage

data <- democracy_long %>% filter(variable == "mainwaring")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Munck

This is the dataset in Munck 2009. Taken from Pemstein, Meserve, and Melton 2013.

Coverage

data <- democracy_long %>% filter(variable == "munck_pmm")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)

PACL/ACLP/DD

This is the dataset described in Cheibub, Gandhi, and Vreeland 2010.

Coverage

data <- democracy_long %>% filter(variable == "pacl")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years", x="") +
  facet_wrap(~variable, ncol=2) 
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

PEPS

This is the dataset described in Moon et al 2006.

Coverage

The democracy file contains seven variables from this dataset: PEPS1i, PEPS2i, PEPS1q, PEPS2q, PEPS1v,PEPS2v, and Polity3, a cleaned up version of the polity2 variable in the Polity IV data. The PEPS* variables are constructed from Polity3 and a participation variable derived either from Vanhanen’s population and raw participation data (variables ending in *v) or from voting turnout data from IDEA (variables ending in q or i).

data <- democracy_long %>% filter(variable %in% c("PEPS1i","PEPS2i","PEPS1q","PEPS2q","PEPS1v","PEPS2v","Polity3"))

data <- left_join(panel,data) 
## Joining, by = c("country_name", "year")
data <- data %>% group_by(variable,year, add=TRUE) %>% count_(vars = c("year","in_system","variable"))

ggplot(data =  data, aes(x=year,fill = in_system, y = n)) + 
    geom_bar(stat = "identity") +
    theme_bw() +
    theme(legend.position = "bottom") +
    labs(fill = "In G&W system of states", y = "Number of states or territories\nin each year of `democracy` panel") +
    ggtitle("Temporal coverage \nwithin the `democracy` dataset") + 
  facet_wrap(~variable) 

data <- democracy_long %>% filter(variable %in% c("PEPS1i","PEPS2i","PEPS1q","PEPS2q","PEPS1v","PEPS2v"))

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value),binwidth=1) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years", x="") +
  facet_wrap(~variable, ncol=2)

library(GGally)
ggcorr(data = democracy %>% select(PEPS1i:PEPS2v), label=TRUE,label_round=3) + scale_fill_gradient2(midpoint = 0.7)
## Scale for 'fill' is already present. Adding another scale for 'fill',
## which will replace the existing scale.

Known problems

The Polity3 variable is different from the polity2 variable in the following cases, mostly due to the different way in which Moon et al recode transitional periods, but in some cases due to revisions in the underlying Polity IV dataset since 2006:

kable(democracy %>%
        filter(Polity3 != polity2) %>%
        group_by(country_name,Polity3,polity2,polity) %>%
        summarise(years = min(year), max = max(year), n = n()))
country_name Polity3 polity2 polity years max n
Afghanistan -7 0 -77 1978 1978 1
Albania -9 -5 -88 1945 1945 1
Albania -9 0 -77 1939 1944 6
Angola -6 -3 -88 1991 1991 1
Angola -5 -1 -88 1993 1994 2
Angola -4 -2 -88 1995 1996 2
Angola -3 -2 -2 2002 2003 2
Argentina -4 -3 -88 1956 1956 1
Austria 0 -1 -88 1933 1933 1
Austria 8 5 -88 1945 1945 1
Bhutan -8 -10 -10 1953 2003 51
Bolivia -5 -4 -88 1952 1952 1
Bolivia -3 -4 -88 1955 1955 1
Botswana 7 6 6 1969 1986 18
Botswana 8 7 7 1987 1996 10
Botswana 9 8 8 1997 2003 7
Brazil -5 -6 -88 1932 1932 1
Bulgaria -8 -2 -88 1944 1944 1
Bulgaria -7 -4 -88 1945 1945 1
Bulgaria -6 -7 -88 1934 1934 1
Burundi -7 -3 -88 1992 1992 1
Cambodia (Kampuchea) -8 -7 -88 1970 1970 1
Cambodia (Kampuchea) -2 0 -88 1988 1988 1
Cambodia (Kampuchea) -1 0 -88 1989 1989 1
Cambodia (Kampuchea) -1 1 -88 1990 1990 1
Cambodia (Kampuchea) 0 1 -88 1991 1992 2
Chad -7 -4 -88 1984 1984 1
Chad -7 -3 -88 1978 1978 1
Chad -7 0 -77 1979 1983 5
Chile 1 0 -88 1924 1924 1
China -1 -2 -88 1913 1913 1
Comoros 4 0 -77 1995 1995 1
Croatia 7 8 8 2000 2003 4
Cuba -8 -4 -88 1960 1960 1
Czechoslovakia -7 0 -77 1968 1968 1
Denmark 0 1 -88 1904 1904 1
Denmark 1 2 -88 1905 1905 1
Denmark 2 3 -88 1906 1906 1
Denmark 5 4 -88 1909 1909 1
Denmark 6 5 -88 1910 1910 1
Denmark 7 6 -88 1911 1911 1
Dominican Republic -3 0 -77 1861 1864 4
Equatorial Guinea -5 -6 -6 1996 2003 8
Estonia 6 7 7 1999 1999 1
Estonia 6 9 9 2000 2003 4
Fiji 6 5 -88 2000 2000 1
France -7 -8 -88 1860 1860 1
France 0 -1 -88 1871 1871 1
Guinea-Bissau 5 0 -77 1998 1998 1
Guinea-Bissau 5 3 -88 1999 1999 1
Haiti 3 2 -88 1999 1999 1
Hungary -5 -6 -88 1918 1918 1
Hungary -5 -4 -88 1946 1946 1
Hungary -3 -2 -88 1945 1945 1
Indonesia 7 6 6 1999 2003 5
Iran (Persia) -9 0 -88 1979 1979 1
Iran (Persia) -8 -2 -88 1980 1980 1
Iran (Persia) -8 -1 -88 1921 1921 1
Iran (Persia) -7 -6 -88 1924 1924 1
Iran (Persia) -7 -4 -88 1923 1981 2
Iran (Persia) -7 -3 -88 1922 1922 1
Israel 9 6 6 1981 1998 18
Israel 10 6 6 1999 2003 5
Italy/Sardinia -7 -4 -4 1861 1861 1
Italy/Sardinia 1 2 -88 1945 1945 1
Italy/Sardinia 4 5 -88 1946 1946 1
Italy/Sardinia 7 8 -88 1947 1947 1
Korea, People’s Republic of -9 -10 -10 1994 2003 10
Laos -7 -5 -88 1974 1974 1
Laos -6 -2 -88 1973 1973 1
Lesotho 8 0 -77 1998 1998 1
Lesotho 8 2 -88 1999 1999 1
Lesotho 8 4 -88 2000 2000 1
Lesotho 8 6 -88 2001 2001 1
Liberia -1 0 -88 1996 1996 1
Luxembourg 2 -3 -3 1879 1879 1
Luxembourg 10 7 7 1919 1919 1
Malawi 5 4 4 2001 2002 2
Malawi 6 5 5 2003 2003 1
Malawi 7 6 6 1994 2000 7
Mali 6 7 7 2002 2003 2
Mexico -8 -9 -88 1879 1879 1
Mexico -7 -8 -88 1878 1878 1
Morocco -5 -4 -88 1961 1962 2
Morocco -2 -3 -3 1963 1964 2
Mozambique 6 5 5 1994 2003 10
Niger 4 5 5 1999 2003 5
Papua New Guinea 10 4 4 1975 2003 29
Peru -3 -4 -88 1919 1919 1
Peru -1 0 -88 1932 1932 1
Peru 2 -6 -6 1948 1949 2
Peru 2 3 -88 1979 1979 1
Peru 4 -6 -6 1962 1962 1
Peru 4 -2 -2 1950 1955 6
Peru 4 5 5 1956 1961 6
Poland -7 -5 -88 1946 1946 1
Poland -7 -2 -88 1945 1945 1
Portugal -4 -3 -88 1820 1821 2
Portugal -3 -4 -88 1833 1833 1
Rumania -6 -7 -88 1940 1940 1
Rumania -1 -2 -88 1989 1989 1
Russia (Soviet Union) 4 3 3 1993 1999 7
Russia (Soviet Union) 6 5 5 1992 1992 1
Russia (Soviet Union) 7 6 6 2000 2003 4
Rwanda -6 -7 -7 1993 1993 1
Serbia -2 -3 -88 1868 1868 1
Sierra Leone 5 2 -88 2001 2001 1
Sri Lanka (Ceylon) 6 5 5 2003 2003 1
Sweden -8 -9 -88 1811 1811 1
Sweden -1 -2 -88 1908 1908 1
Sweden 7 8 -88 1915 1915 1
Tanzania/Tanganyika -7 -6 -6 1961 1991 31
Tanzania/Tanganyika -6 -5 -5 1992 1994 3
Tanzania/Tanganyika 2 -1 -1 2000 2003 4
Thailand -5 -4 -88 1934 1934 1
Togo -4 -3 -88 1992 1992 1
Uganda 1 0 -88 1966 1966 1
Ukraine 6 5 5 1993 1993 1
Ukraine 6 7 7 1994 1995 2
Ukraine 7 6 6 2000 2003 4
Yugoslavia -5 -4 -88 1944 1944 1
Zambia 1 5 5 2001 2003 3
Zimbabwe (Rhodesia) -7 -4 -4 2002 2003 2
Zimbabwe (Rhodesia) -6 -4 -4 2001 2001 1
Zimbabwe (Rhodesia) -6 -3 -3 1999 1999 1
Zimbabwe (Rhodesia) -5 -3 -3 2000 2000 1
Zimbabwe (Rhodesia) 5 4 -88 1979 1979 1
Zimbabwe (Rhodesia) 5 4 4 1980 1982 3

PITF

These are the scores used in Goldstone et al 2010 and (in binary form) in Taylor and Ulfelder 2015.

Coverage

data <- democracy_long %>% filter(variable == "pitf")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_bar(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years", x="") +
  facet_wrap(~variable, ncol=2) 

data <- democracy_long %>% filter(variable == "pitf_binary")

ggplot(data = data) +
  geom_bar(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years", x="") +
  facet_wrap(~variable, ncol=2) 

Polity

These are variables from the Polity IV dataset in country-year format, updated to 2014 (Marshall, Gurr, and Jaggers 2012).

Coverage

data <- democracy_long %>% filter(variable == "polity")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable == "polity2")

ggplot(data = data) +
  geom_histogram(aes(x=value),binwidth=1) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)

Polyarchy

The dataset from Coppedge and Reinicke 1991, revised in 2003-2006 with a new “contestation” measure.

Coverage

data <- democracy_long %>% filter(variable == "polyarchy_reversed")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable %in% c("polyarchy_reversed","polyarchy_contestation"))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

kable(democracy %>% 
        filter(!is.na(polyarchy_reversed)) %>% 
        count(polyarchy_reversed,polyarchy_contestation),
      caption = "Relationship between reversed polyarchy measure and polyarchy contestation measure")
polyarchy_reversed polyarchy_contestation n
0 1 35
1 2 12
2 2 24
3 3 22
4 4 17
5 4 16
5 5 10
6 5 33
7 6 19
8 7 21
9 8 35
10 9 113

Political Regime Change (PRC)/Gasiorowski dataset

The dataset first described in Gasiorowski 1996, and updated and revised in Reich 2002.

Coverage

data <- democracy_long %>% filter(variable == "prc")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

PIPE

A constructed regime variable from Przeworski 2013 (the Political Institutions and Political Events (PIPE) Data Set).

Coverage

data <- democracy_long %>% filter(variable == "przeworski")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

It is not clear that this index is correctly constructed, given the confusing documentation in the original dataset. Use with care.

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Svolik

This uses a measure of democracy derived from the authoritarian regime dataset in Svolik 2012. The original data is extended to before 1946 using the information encoded in the o_startdate variable of the original dataset, which provides information for the start dates of some authoritarian regimes.

Coverage

data <- democracy_long %>% filter(variable == "svolik")

temporal_coverage(data) +
  geom_vline(xintercept = 1946) +
  annotate("text", label = "Limit of original dataset", x = 1946,y = 100, angle=90)
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Ulfelder

The dataset in Ulfelder 2012.

Coverage

data <- democracy_long %>% filter(variable == "ulfelder")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

UTIP

A measure of democracy from the regime type dataset described in Hsu 2008. This dataset identifies three types of democracies: “social democracies”, “conservative democracies”, and “one party democracies.” “One party democracies” are poorly documented, but seem to be equivalent to multiparty autocracies. utip_dichotomous_strict identifies as democracies only social or conservative democracies; utip_dichotomous also identifies as democracies those “one party democracies”; and utip_trichotomous assumes that “one party democracies” are hybrid regimes between democracy and non-democracy.

Coverage

data <- democracy_long %>% filter(variable == "utip_dichotomous")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable %in% c("utip_dichotomous_strict","utip_dichotomous","utip_trichotomous"))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Vanhanen

This is the dataset in Vanhanen 2012.

Coverage

data <- democracy_long %>% filter(variable == "vanhanen_democratization")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(variable %in% c("vanhanen_democratization","vanhanen_participation","vanhanen_competition"))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)  

V-Dem

This is a selection of the major democracy indexes from version 6 of the V-Dem dataset (v2x* variables) (Coppedge et al. 2016).

Coverage

Most of the not in-system country-years in the main dataset are from V-Dem.

data <- democracy_long %>% filter(variable == "v2x_polyarchy")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

data <- democracy_long %>% filter(grepl("v2x",variable))

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = data) +
  geom_density(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Density") +
  facet_wrap(~variable, ncol=2)  

ggcorr(data = democracy %>% select(v2x_api:v2x_polyarchy), label=TRUE,label_round=3, hjust=1) + scale_fill_gradient2(midpoint = 0.7)
## Scale for 'fill' is already present. Adding another scale for 'fill',
## which will replace the existing scale.

Wahman Teorell and Hadenius

This is a measure of democracy from the authoritarian Regimes Data Set, version 5.0, by Hadenius, Teorell, & Wahman, described in Hadenius and Teorell 2007 and in Wahman, Teorell, Hadenius 2013.

Coverage

data <- democracy_long %>% filter(variable == "wahman_teorell_hadenius")

temporal_coverage(data) 
## Joining, by = c("country_name", "year")

spatial_coverage(data)

Distribution

ggplot(data = data) +
  geom_histogram(aes(x=value)) +
  theme_bw() +
  theme(legend.position = "bottom") +
  labs(y = "Country-years") +
  facet_wrap(~variable, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Differences between Gleditsch and Ward codes, Polity codes and COW codes

count_sequence_breaks <- function(seq, seq_step = 1) {
  first_diff <- c(seq_step, diff(seq)) - seq_step
  periods <- cumsum(abs(first_diff))
  periods
}

kable(democracy %>%
        filter(GWn != cown | GWn != polity_ccode | cown != polity_ccode) %>%
        distinct(country_name,GWn,cown,polity_ccode,year) %>%
        arrange(country_name,GWn,cown,polity_ccode,year) %>% 
        group_by(country_name,GWn,cown,polity_ccode) %>%
        mutate(period = count_sequence_breaks(year)) %>%
        group_by(period, add = TRUE) %>%
        summarise(min = min(year), max = max(year), n = n()),
      caption = "Differences between Gleditsch and Ward codes, COW codes, and Polity codes")
country_name GWn cown polity_ccode period min max n
Ethiopia 530 530 529 0 1994 2015 22
German Federal Republic 260 255 255 0 1991 2015 25
Italy/Sardinia 325 325 324 0 1815 1860 46
Kiribati 970 946 946 0 1978 2015 38
Kosovo 347 347 341 0 1999 2015 17
Montenegro 341 341 348 0 1878 1917 40
Montenegro 341 341 348 81 1999 2015 17
Nauru 971 970 970 0 1968 2015 48
Pakistan 770 770 769 0 1947 1971 25
Russia (Soviet Union) 365 365 364 0 1923 1991 69
Serbia 340 345 342 0 1830 1920 91
Serbia 340 345 342 85 2006 2015 10
South Sudan 626 626 525 0 2011 2015 5
Sudan 625 625 626 0 1900 1947 48
Sudan 625 625 626 5 1953 1955 3
Sudan 625 625 626 60 2011 2015 5
Tonga 972 955 955 0 1963 2015 53
Tuvalu 973 947 947 0 1977 2015 39
Vietnam (Annam/Cochin China/Tonkin) 815 816 816 0 1800 1892 93
Vietnam (Annam/Cochin China/Tonkin) 815 816 816 9 1902 1948 47
Vietnam, Democratic Republic of 816 816 818 0 1945 1953 9
Vietnam, Democratic Republic of 816 816 818 22 1976 2015 40
Yemen (Arab Republic of Yemen) 678 679 679 0 1990 2015 26
Yugoslavia 345 345 347 0 1913 1920 8
Yugoslavia 345 345 347 70 1991 2006 16

Differences with the CoW system of states

There are a few country-years that are in the CoW state system but are not included in this dataset:

COW_system <- read.csv("http://www.correlatesofwar.org/data-sets/state-system-membership/system2011/at_download/file")

COW_system <- COW_system %>% rename(cown = ccode)

kable(anti_join(COW_system,democracy))
## Joining, by = c("cown", "year")
stateabb cown year version
YAR 678 1990 2011
ZAN 511 1964 2011
SIC 329 1861 2011
GMY 255 1990 2011
AUH 300 1918 2011
TUN 616 1881 2011
EGY 651 1882 2011

Germany in 1990 appears with the GWn code 260 for 1990, since Gleditsch and Ward treats it as a continuation of the Federal Republic; similarly, the Yemen Arab Republic appears with the GWn code 678 for 1990, since Gleditsch and Ward treat is a continuation of the previous state, while CoW considers it a new state (code 679). The rest - Zanzibar 1964, Sicily (Kingdom of the Two Sicilies) 1861, Austria-Hungary 1918, Tunisia 1881, and Egypt 1882 have no data for the democracy measures. These cases also represent years where these countries lost their independence or disappeared.

It is also worth noting that, though there are no duplicate country-years wehn grouping by country_name or GWn or polity_ccode, when grouping by cown, there are a few duplicate observations:

kable(democracy %>% 
        group_by(country_name,year) %>% 
        filter(n() > 1) %>% 
        group_by(country_name) %>% 
        summarise(countries = paste(unique(country_name),collapse = ", "), min(year), max(year)))
country_name countries min(year) max(year)
kable(democracy %>% 
        group_by(GWn,year) %>% 
        filter(n() > 1) %>% 
        group_by(GWn) %>% 
        summarise(countries = paste(unique(country_name),collapse = ", "), min(year), max(year)))
GWn countries min(year) max(year)
kable(democracy %>% 
        group_by(polity_ccode,year) %>% 
        filter(n() > 1) %>% 
        group_by(polity_ccode) %>% 
        summarise(countries = paste(unique(country_name),collapse = ", "), min(year), max(year)))
polity_ccode countries min(year) max(year)
kable(democracy %>% 
        group_by(cown,year) %>% 
        filter(n() > 1) %>% 
        group_by(cown) %>% 
        summarise(countries = paste(unique(country_name),collapse = ", "), min(year), max(year)))
cown countries min(year) max(year)
345 Serbia, Yugoslavia 1913 2006
816 Vietnam (Annam/Cochin China/Tonkin), Vietnam, Democratic Republic of 1945 1948

References

Arat, Zehra F. 1991. Democracy and human rights in developing countries. Boulder: Lynne Rienner Publishers.

Bernhard, Michael Timothy Nordstrom, and Christopher Reenock, “Economic Performance, Institutional Intermediation and Democratic Breakdown,” Journal of Politics 63:3 (2001), pp. 775-803. Data and coding description available at http://users.clas.ufl.edu/bernhard/content/data/data.htm

Boix, Carles, Michael Miller, and Sebastian Rosato. 2012. A Complete Data Set of Political Regimes, 1800-2007. Comparative Political Studies 46 (12): 1523-1554. Original data available at https://sites.google.com/site/mkmtwo/democracy-v2.0.dta?attredirects=0

Bollen, Kenneth A. 2001. “Cross-National Indicators of Liberal Democracy, 1950-1990.” 2nd ICPSR version. Chapel Hill, NC: University of North Carolina, 1998. Ann Arbor, MI: Inter-university Consortium for Political and Social Research, 2001. Original data available at http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/02532.xml.

Bowman, Kirk, Fabrice Lehoucq, and James Mahoney. 2005. Measuring Political Democracy: Case Expertise, Data Adequacy, and Central America. Comparative Political Studies 38 (8): 939-970. http://cps.sagepub.com/content/38/8/939. Data available at http://www.blmdemocracy.gatech.edu/.

Cheibub, Jose Antonio, Jennifer Gandhi, and James Raymond Vreeland. 2010. “Democracy and Dictatorship Revisited.” Public Choice. 143(1):67-101. Original data available at https://sites.google.com/site/joseantoniocheibub/datasets/democracy-and-dictatorship-revisited.

Coppedge, Michael, John Gerring, Staffan I. Lindberg, Svend-Erik Skaaning, and Jan Teorell, with David Altman, Michael Bernhard, M. Steven Fish, Adam Glynn, Allen Hicken, Carl Henrik Knutsen, Kelly McMann, Pamela Paxton, Daniel Pemstein, Jeffrey Staton, Brigitte Zimmerman, Frida Andersson, Valeriya Mechkova, Farhad Miri. 2015. V-Dem Codebook v5. Varieties of Democracy (V-Dem) Project. Original data available at https://v-dem.net/en/data/.

Coppedge, Michael and Wolfgang H. Reinicke. 1991. Measuring Polyarchy. In On Measuring Democracy: Its Consequences and Concomitants, ed. Alex Inkeles. New Brunswuck, NJ: Transaction pp. 47-68.

Doorenspleet, Renske. 2000. Reassessing the Three Waves of Democratization. World Politics 52 (03): 384-406. DOI: 10.1017/S0043887100016580. http://dx.doi.org/10.1017/S0043887100016580.

Economist Intelligence Unit. 2012. Democracy Index 2012: Democracy at a Standstill.

Freedom House. 2015. “Freedom in the World.” Original data available at http://www.freedomhouse.org.

Gasiorowski, Mark J. 1996. “An Overview of the Political Regime Change Dataset.” Comparative Political Studies 29(4):469-483.

Geddes, Barbara, Joseph Wright, and Erica Frantz. 2014. Autocratic Breakdown and Regime Transitions: A New Data Set. Perspectives on Politics 12 (1): 313-331. Original data available at http://dictators.la.psu.edu/.

Gleditsch, Kristian S. & Michael D. Ward. 1999. “Interstate System Membership: A Revised List of the Independent States since 1816.” International Interactions 25: 393-413. The list can be found at http://privatewww.essex.ac.uk/~ksg/statelist.html

Goldstone, Jack, Robert Bates, David Epstein, Ted Gurr, Michael Lustik, Monty Marshall, Jay Ulfelder, and Mark Woodward. 2010. A Global Model for Forecasting Political Instability. American Journal of Political Science 54 (1): 190-208. DOI:10.1111/j.1540-5907.2009.00426.x

Hadenius, Axel. 1992. Democracy and Development. Cambridge: Cambridge University Press.

Hadenius, Axel & Jan Teorell. 2007. “Pathways from Authoritarianism”, Journal of Democracy 18(1): 143-156.

Hsu, Sara “The Effect of Political Regimes on Inequality, 1963-2002,” UTIP Working Paper No. 53 (2008), http://utip.gov.utexas.edu/papers/utip_53.pdf. Data available for download at http://utip.gov.utexas.edu/data/.

Kailitz, Steffen. 2013. Classifying political regimes revisited: legitimation and durability. Democratization 20 (1): 39-60. Original data available at http://dx.doi.org/10.1080/13510347.2013.738861.

Mainwaring, Scott, Daniel Brinks, and Anibal Perez Linan. 2008. “Political Regimes in Latin America, 1900-2007.” Original data available from http://kellogg.nd.edu/scottmainwaring/Political_Regimes.pdf.

Magaloni, Beatriz, Jonathan Chu, and Eric Min. 2013. Autocracies of the World, 1950-2012 (Version 1.0). Dataset, Stanford University. Original data and codebook available at http://cddrl.fsi.stanford.edu/research/autocracies_of_the_world_dataset/

Marshall, Monty G., Ted Robert Gurr, and Keith Jaggers. 2012. “Polity IV: Political Regime Characteristics and Transitions, 1800-2012.” Updated to 2015. Original data available from http://www.systemicpeace.org/polity/polity4.htm.

Moon, Bruce E., Jennifer Harvey Birdsall, Sylvia Ceisluk, Lauren M. Garlett, Joshua J. Hermias, Elizabeth Mendenhall, Patrick D. Schmid, and Wai Hong Wong (2006) “Voting Counts: Participation in the Measurement of Democracy” Studies in Comparative International Development 42, 2 (Summer, 2006). The complete dataset is available here: http://www.lehigh.edu/~bm05/democracy/Obtain_data.htm.

Munck, Gerardo L. 2009. Measuring Democracy: A Bridge Between Scholarship and Politics. Baltimore: Johns Hopkins University Press.

Pemstein, Daniel, Stephen Meserve, and James Melton. 2010. Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type. Political Analysis 18 (4): 426-449.

Pemstein, Daniel, Stephen A. Meserve, and James Melton. 2013. “Replication data for: Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type.” In: Harvard Dataverse. http://hdl.handle.net/1902.1/PMM

Przeworski, Adam et al. 2013. Political Institutions and Political Events (PIPE) Data Set. Department of Politics, New York University. https://sites.google.com/a/nyu.edu/adam-przeworski/home/data

Reich, G. 2002. Categorizing Political Regimes: New Data for Old Problems. Democratization 9 (4): 1-24. http://www.tandfonline.com/doi/pdf/10.1080/714000289.

Skaaning, Svend-Erik, John Gerring, and Henrikas Bartusevicius. 2015. A Lexical Index of Electoral Democracy. Comparative Political Studies 48 (12): 1491-1525. Original data available from http://thedata.harvard.edu/dvn/dv/skaaning.

Svolik, Milan. 2012. The Politics of Authoritarian Rule. Cambridge and New York: Cambridge University Press. Original data available from http://campuspress.yale.edu/svolik/the-politics-of-authoritarian-rule/.

Taylor, Sean J. and Ulfelder, Jay, A Measurement Error Model of Dichotomous Democracy Status (May 20, 2015). Available at SSRN: http://ssrn.com/abstract=2726962 or http://dx.doi.org/10.2139/ssrn.2726962

Ulfelder, Jay. 2012. “Democracy/Autocracy Data Set.” In: Harvard Dataverse. http://hdl.handle.net/1902.1/18836.

Vanhanen, Tatu. 2012. “FSD1289 Measures of Democracy 1810-2012.” Original data available from http://www.fsd.uta.fi/english/data/catalogue/FSD1289/meF1289e.html

Wahman, Michael, Jan Teorell, and Axel Hadenius. 2013. Authoritarian regime types revisited: updated data in comparative perspective. Contemporary Politics 19 (1): 19-34.